Abstrak/Abstract |
Nowadays, the hybridization of natural and glass fiber has promised several advantages
as a green composite. Nevertheless, their different characteristics lead to poor mechanical bonding.
In this work, agel fiber and glass fiber was used as reinforcements, and activated carbon filler was
added to the polymer matrix of a hybrid composite to modify its characteristics and mechanical
properties. A tensile and bending test was conducted to evaluate the effect of three different weight
percentages of activated carbon filler (1, 2, and 4 wt%). Vacuum-assisted resin infusion was used to
manufacture the hybrid composite to obtain the high-quality composite. The results have revealed
that adding 1 wt% filler yielded the most optimum result with the highest tensile strength, flexural
strength, and elastic modulus, respectively: 112.90 MPa, 85.26 MPa, and 1.80 GPa. A higher weight
percentage of activated carbon filler on the composite reduced its mechanical properties. The lowest
test value was shown by the composite with 4 wt%. The micrograph observations have proven that
the 4 wt% composite formed agglomeration filler that can induce stress concentration and reduce its
mechanical performance. Adding 1 wt% filler offered the best dispersion in the matrix, which can
enhance better load transfer capability |