Karya
Judul/Title Positively Graded Rings which are Unique Factorization Rings
Penulis/Author Iwan Ernanto S.Si., M.Sc. (1) ; Hidetoshi Marubayashi (2); Akira Ueda (3); Prof. Dr. Sri Wahyuni, S.U. (4)
Tanggal/Date 17 2020
Kata Kunci/Keyword
Abstrak/Abstract Let R= \oplus_{n\in Z0} Rn be a positively graded ring which is a sub-ring of the strongly graded ring S=\oplus_{n\in Z}Rn, where R0 is a Noetherian prime ring. It is shown that R is a unique factorization ring in the sense of (Commun. Algebra 19, 167–198, 1991) if and only if R0 is a Z0-invariant unique factorization ring and R1 is a principal (R0, R0) bi-module. We give examples of Z0-invariant unique factorization rings which are not unique factorization rings.
Rumpun Ilmu Matematika
Bahasa Asli/Original Language English
Level Internasional
Status
Dokumen Karya
No Judul Tipe Dokumen Aksi
1Editorial Board.pdf[PAK] Halaman Editorial
2Bukti Coressponding Author.pdf[PAK] Bukti Korespondensi Penulis
3Cover.pdf[PAK] Halaman Cover
4form-L1-permohonan_penghargaan-karya-ilmiah-sudah-terbit-2021.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
5Vietnam Journal of Mathematics _ Volume 49, issue 4.pdf[PAK] Daftar Isi
6Dokumen-Lengkap-Positively-Graded-Vietnam.pdf[PAK] Full Dokumen
7Scimago-Vietnam Journal of Mathematics.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
8WoS-Positively Graded Rings which are Unique Factorization Rings-Web of Science Core Collection.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
9Scopus - Document details - Positively Graded Rings which are Unique Factorization Rings _ Signed in.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
10Bukti Korespondensi.pdf[PAK] Bukti Korespondensi Penulis
11Full Document.pdf[PAK] Full Dokumen
12Cek Similarity-2023.pdf[PAK] Cek Similarity
13Positively Graded Rings which are Unique Factorization Rings.pdf[PAK] Full Dokumen