Karya
Judul/Title On representation of a ring on a free modules over a commutative ring with identity
Penulis/Author NAIMAH HIJRIATI (1) ; Prof. Dr. Sri Wahyuni, S.U. (2); Prof. Dr.rer.nat. Indah Emilia Wijayanti, S.Si., M.Si. (3)
Tanggal/Date 2016
Kata Kunci/Keyword
Abstrak/Abstract Let R be a commutative ring with identity and M be a free R-module then we always have a representation of R, that is homomorphism ring μ: R → EndR(M), with μ(r) := μr : M → M and μr(m) = rm for all r ∈ R and for all m ∈ M. In this paper, we will present some properties of representations of ring R on R-module, based on some notions in representation of R on vector space, such as admissible submodule, equivalence of two representations, decomposable representation and completely reducible representation. It will be shown that if M, N are two free R-modules then two representations μ: R→ EndR(M) and φ: R → EndR(N) are equivalent if and only if there is a module isomorphism T : M → N. If R is a principle ideal domain(PID), then it will be shown that every submodule of M is an admissible submodule of M, every representation of ring R on a free R-module is decomposable, and a representation of R on M is completely reducible if and only if M is semisimple.
Rumpun Ilmu Matematika
Level Internasional
Status
Dokumen Karya
No Judul Tipe Dokumen Aksi
1Sertifikat-AMC-Naimah.pdfArtikel dan Sertifikat/Bukti Kehadiran/Pasport (jika tidak ada sertifikat)
2On representation of a ring on a free module over a commutative ring with identity (2).pdfCek Similarity
3Scopus - Document details - On representation of polynomial ring on a vector space via a linear transformation _ Signed in.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
4On representation of a ring on a free modules over a commutative ring with identity.pdf[PAK] Full Dokumen
5On representation of a ring on a free modules over a commutative ring with identity.pdf[PAK] Full Dokumen
6prosiding_On representation of a ring on a free modules over a commutative ring with identity.pdf[PAK] Full Dokumen