Karya
Judul/Title Machine-learning regression for coral reef percentage cover mapping
Penulis/Author Prof. Dr. Pramaditya Wicaksono, S.Si., M.Sc. (1) ; WAHYU LAZUARDI (2); Afif Al Hadi (3); Prof. Muhammad Kamal, S.Si., M.GIS., Ph.D. (4)
Tanggal/Date 24 2018
Kata Kunci/Keyword
Abstrak/Abstract Coral reef live percent cover (LPC) mapping has always been a challenging application for remote-sensing. The adoption of machine-learning algorithm in remote-sensing has opened-up the possibility of mapping coral reef at higher accuracy. This paper presents the application of machine-learning regression in the empirical modeling of coral reef LPC mapping. Stepwise regression, Support Vector Machine (SVM) regression, and Random Forest (RF) regression were used model the percentage of live coral cover in optically shallow water of Parang Island, Central Java, Indonesia using field photo-transect data to train the PlanetScope image. PlanetScope multispectral bands were transformed into water column corrected bands, Principle Component bands, and Cooccurrence texture analysis bands to be used as predictors in the regression process. The results indicate that the accuracy of machine learning algorithm to map coral reef LPC is relatively low due to the radiometric quality issue in the PlanetScope image (RMSE = 15.43%). We could not yet fairly justify the performance of machine learning algorithm until we applied the algorithms in other images.
Level Internasional
Status
Dokumen Karya
No Judul Tipe Dokumen Aksi
11077801.pdf[PAK] Dokumen Susunan Panitia
21077801.pdf[PAK] Informasi Dewan Redaksi/Editor/Steering Committee
3Foto pada saat presentasi pada SPIE Asia.pdf[PAK] Sertifikat Seminar
4korespondensi.pdf[PAK] Bukti Korespondensi Penulis
5Machine-learning regression for coral reef percentage Cek Similarity.pdfCek Similarity
6Full Dokumen SPIE Prama 2018.pdf[PAK] Full Dokumen
7Surat Keterangan Publikasi Mhs pros spie asia pacific.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)