Karya
Judul/Title Incoming Local Exponent of Two-cycle Bicolour Hamiltonian Digraph with a Difference of 2n + 1
Penulis/Author YOGO DWI PRASETYO (1) ; Prof. Dr. Sri Wahyuni, S.U. (2); Yeni Susanti (3); Dr. Diah Junia Eksi Palupi, S.U. (4)
Tanggal/Date 27 2021
Kata Kunci/Keyword
Abstrak/Abstract A bicolour digraph D(2) is a directed graph with every arc coloured in one of two colours, red or black. Suppose r and k are nonnegative integers representing the number of red and black arcs, respectively. The smallest sum of r and k such that every node on D(2) has a walk to node x is called the incoming local exponent of node dx. For primitive bicolour digraphs with a difference of 2n + 1, there will be three or four red arcs. This article discusses the incoming local exponent for a primitive bicolour Hamiltonian digraph with a difference of 2n + 1.
Rumpun Ilmu Matematika
Bahasa Asli/Original Language English
Level Internasional
Status
Dokumen Karya
No Judul Tipe Dokumen Aksi
1Incoming Local Exponent for a Two-cycle Bicolour Hamiltonian Digraph with a Difference of 2n + 1.pdf[PAK] Cek Similarity
2Dokumen-Lengkap-Incoming Local Exponent.pdf[PAK] Full Dokumen
3Scimago-jurnal_2079942_6aff974cc900b14d26feb364e7a6f5bc.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
4Scopus - Document details - Incoming Local Exponent for a Two-cycle Bicolour Hamiltonian Digraph with a Difference of 2n + 1 _ Signed in.pdfDokumen Pendukung Karya Ilmiah (Hibah, Publikasi, Penelitian, Pengabdian)
5Incoming Local Exponent of Two-cycle Bicolour Hamiltonian Digraph with a Difference of 2n + 1.pdf[PAK] Full Dokumen